Thursday, April 06, 2006

Joel: JPCB Update

Interesting Article
Detecting Gas Hydrate Behavior in Crude Oil Using NMR
S. Gao, W. House,and W.G. Chapman
J.Phys.Chem.B (2006)110, 6549.
Abstract:
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

Multinuclear Solid-State High Resolution and 13C-{27Al} Double Resonance Magic-Angle Spinning NMR Studies on Aluminum Alkoxides.
A. Abraham, R. Prins, J.A. van Bokhoven, E.R.H. van Eck, A.P.M Kentgens.
J.Phys.Chem.B (2006)110, 6549.
Abstract:
A combination of 27Al magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, 13C-1H CPMAS, and 13C-{27Al} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum isopropoxide, and aluminum tertiarybutoxide. Aluminum alkoxides exist as oligomers with aluminum in different coordinations. High-resolution 27Al MAS NMR experiments with high-spinning speed distinguished the aluminum atoms in different environments. The 27Al MAS NMR spectrum gave well-resolved powder patterns with different coordinations. Z-filter MQ-MAS was performed to obtain the number and types of aluminum environments in the oligomeric structure. 13C-1H CPMAS chemical shifts resolved the different carbon species (-CH3, =CH2, =CH-, and =C=) in the structures. 13C-{27Al} TRAPDOR experiments were employed to obtain relative Al-C dipolar interactions and to distinguish between terminal and bridging alkoxides in the crystallographic structures. The complete characterization of selected aluminum alkoxides using advanced NMR methods has evidenced the tetrameric structure for aluminum isopropoxide and the dimeric structure for aluminum tertiary-butoxide, as reported in the literature, and proposed a polymeric structure for aluminum ethoxide.

Rob Posted Before
NMR Study of Strontium Binding by a Micaceous Mineral
G.M. Bowers, R. Ravella, S. Komarneni, and K.T. Mueller
J.Phys.Chem.B (2006)110, 7159.

Goward Paper
7Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3
L.S. Cahill, R.P. Chapman, J.F. Britten, and G.R. Goward
J.Phys.Chem.B (2006)110, 7171.
Abstract:
High-resolution solid-state 7Li NMR was used to characterize the structure and dynamics of lithium ion transport in monoclinic Li3V2(PO4)3. Under fast magic-angle spinning (MAS) conditions (25 kHz), three resonances are clearly resolved and assigned to the three unique crystallographic sites. This assignment is based on the Fermi-contact delocalization interaction between the unpaired d-electrons at the vanadium centers and the lithium ions. One-dimensional variable-temperature NMR and two-dimensional exchange spectroscopy (EXSY) are used to probe Li mobility between the three sites. Very fast exchange, on the microsecond time scale, was observed for the Li hopping processes. Activation energies are determined and correlated to structural properties including interatomic Li distances and Li-O bottleneck sizes.

Little off topic but ever wonder how...
Modeling the Cycles of Growth and Detachment of Bubbles in Carbonated Beverages.
S. Uzel, M.A. Chappell, S.J. Payne.
J.Phys.Chem.B (2006)110, 7579.
Abstract:
In this paper, a model for the formation of bubbles in carbonated beverages is presented. It has previously been shown that bubbles form from cellulose fibers within such beverages and the passage of such bubbles from the fibers to the liquid surface has been modeled. A model is thus presented here that considers the process of formation, which is governed by diffusion through the fiber and bubble surfaces. The model comprises two stages, growth and detachment, and it is shown here that both play an important role. The latter process is found to occur over a much shorter time scale than the former, enabling the models to be partially decoupled. The total number of bubbles released from individual fibers over time is found to be approximated well by an exponential relationship, and the parameters in this relationship are presented for a range of different detachment angles and fiber sizes. It is found that bubble formation is promoted in narrow, long tubes, but that the time constant is solely determined by the rate of diffusion across the liquid surface. The surface tension is found to have minimal influence on the number of bubbles produced.

No comments: