Wednesday, August 27, 2008

Journal of Solid State Chemistry Vol. 181, Iss. 8

Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate–silica fume mixtures
Journal of Solid State Chemistry Volume 181, Issue 8,Pages 1744-1752
P. Pena, J.M. Rivas Mercury, A.H. de Aza, X. Turrillas, I. Sobrados, J. Sanz
Abstract

Partially deuterated Ca3Al2(SiO4)y(OH)12−4y–Al(OH)3 mixtures, prepared by hydration of Ca3Al2O6 (C3A), Ca12Al14O33 (C12A7) and CaAl2O4 (CA) phases in the presence of silica fume, have been characterized by 29Si and 27Al magic-angle spinning–nuclear magnetic resonance (MAS–NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca3Al2(OH)12 and Al(OH)3 phases were detected. From the quantitative analysis of 27Al NMR signals, the Al(OH)3/Ca3Al2(OH)12 ratio was deduced. The incorporation of Si into the katoite structure, Ca3Al2(SiO4)3−x(OH)4x, was followed by 27Al and 29Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27Al MAS–NMR components associated with Al(OH)6 and Al(OSi)(OH)5 environments. The 29Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C–S–H and C–A–S–H for short. From 29Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures.

Solid-state NMR and EPR study of fluorinated carbon nanofibers
Journal of Solid State Chemistry Volume 181, Issue 8, Pages 1915-1924
Wei Zhang, Marc Dubois, Katia Guérin, André Hamwi, Jérôme Giraudet, Francis Masin
Abstract
Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF4 during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF)n structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C2F)n type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O2), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined.

No comments: