Antusek, A., M. Jaszunski, et al. (2007).
"Ab initio study of interaction-induced NMR shielding constants in mixed rare gas dimers."
The Journal of Chemical Physics 126(7): 074303-9.
The interaction-induced contribution to the NMR shielding constants in homonuclear A2 and heteronuclear AB (A,B=He,Ne,Ar) dimers is obtained ab initio by employing a coupled cluster singles and doubles with perturbative treatment of triples wave function model and extended correlation-consistent basis sets. The second virial coefficients entering the expansion of the property with the density are then computed in a fully quantum mechanical approach, for temperatures ranging from the limit of dissociation of the dimer to well above standard conditions. The results can be used to describe the density and temperature dependence of the shielding constants in binary mixtures of helium, neon, and argon. The predicted effects should be observable for the interaction of 21Ne with other rare gases.
Schmidt-Rohr, K., A. Rawal, et al. (2007).
"A new NMR method for determining the particle thickness in nanocomposites, using T[sub 2,H]-selective X{[sup 1]H} recoupling."
The Journal of Chemical Physics 126(5): 054701-16.
A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for ~0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90° pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H–X dipolar couplings approximately commute with short-range 1H–1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical particles of up to 10 nm diameter can be characterized quite easily.
Teale, A. M., A. J. Cohen, et al. (2007).
"Transition metal NMR chemical shifts from optimized effective potentials."
The Journal of Chemical Physics 126(7): 074101-7.
Metal shielding constants and chemical shifts are determined for nine transition metal complexes using an uncoupled formalism with orbitals and eigenvalues determined using the Yang-Wu implementation [W. Yang and Q. Wu, Phys. Rev. Lett. 89, 143002 (2002)] of the optimized effective potential approach in density functional theory. Preliminary calculations using generalized gradient approximation functionals quantify the influence of the variables in the optimized effective potential implementation. In particular, a flexible potential expansion is necessary for a precise calculation of these quantities. Hybrid functionals are then considered. Expanding the potential in the primary orbital basis yields chemical shifts that are a notable improvement over conventional hybrid values, and which are a marginal improvement over those obtained using a high-quality generalized gradient approximation. Similar shifts are obtained using a more flexible potential expansion, although care is required to avoid unphysical structure in the exchange-correlation potential.
Tycko, R. (2007).
"Symmetry-based constant-time homonuclear dipolar recoupling in solid state NMR."
The Journal of Chemical Physics 126(6): 064506-9.
Constant-time dipolar recoupling pulse sequences are advantageous in structural studies by solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) because they yield experimental data that are relatively insensitive to radio-frequency pulse imperfections and nuclear spin relaxation processes. A new approach to the construction of constant-time homonuclear dipolar recoupling sequences is described, based on symmetry properties of the recoupled dipole-dipole interaction Hamiltonian under cyclic displacements in time with respect to the MAS sample rotation period. A specific symmetry-based pulse sequence called PITHIRDS-CT is introduced and demonstrated experimentally. 13C NMR data for singly-13C-labeled amino acid powders and amyloid fibrils indicate the effectiveness of PITHIRDS-CT in measurements of intermolecular distances in solids. 15N-detected and 13C-detected measurements of intramolecular 15N–15N distances in peptides with alpha-helical and beta-sheet structures indicate the utility of PITHIRDS-CT in studies of molecular conformations, especially measurements of backbone psi torsion angles in peptides containing uniformly 15N- and 13C-labeled amino acids.
Iuga, A., D. Iuga, et al. (2007).
"Observation of satellite signals due to scalar coupling to spin-1/2 isotopes in solid-state nuclear magnetic resonance spectroscopy."
The Journal of Chemical Physics 126(5): 054305-10.
A method is introduced to select the signal from a spin-1/2 nucleus I specifically bound to another spin-1/2 nucleus S for solid-state magic angle spinning nuclear magnetic resonance (NMR) spectroscopy via correlation through the heteronuclear J coupling. This experiment is analogous to the bilinear rotation decoupling (BIRD) sequence in liquid-state NMR spectroscopy which selects for signals from 1H directly bound to 13C. The spin dynamics of this modified BIRD experiment is described using the product-operator formalism, where experimental considerations such as rotor synchronization and the effect of large chemical shielding anisotropies on I and S are discussed. Two experiments are proposed that accommodate large chemical shielding anisotropies on S: (1) by stepping the inversion pulse frequency through the entire S spectral range or (2) by adiabatically inverting the S spins. Both these experiments are shown to successfully select the signal of 19F bound to 129Xe in XeF+ salts, removing the contributions from isotopomers containing non-spin-1/2 Xe isotopes. The feasibility in obtaining isotope-selective 19F spectra of inorganic fluoride compounds is discussed, and further modifications are proposed to expand the application to other chemical systems.
Monday, March 12, 2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment