Monday, April 26, 2010

J. Am. Chem. Soc., 2010, 132 (15), pp 5443–5455

Si═X Multiple Bonding with Four-Coordinate Silicon? Insights into the Nature of the Si═O and Si═S Double Bonds in Stable Silanoic Esters and Related Thioesters: A Combined NMR Spectroscopic and Computational Study
Jan. D. Epping, Shenglai Yao, Miriam Karni, Yitzhak Apeloig and Matthias Driess

Abstract
The electronic structures and nature of silicon−chalcogen double bonds Si═X (X = O, S) with four-coordinate silicon in the unique silanoic silylester 2 and silanoic thioester 3 have been investigated for the first time, by 29Si solid state NMR measurements and detailed DFT and ab initio calculations. 29Si solid state NMR spectroscopy of the precursor silylene 1 was also carried out. The experimental and computational study of 2 and 3, which was also supported by a detailed computational study of smaller model systems with Si═O and Si═S bonds, provides a deeper understanding of the isotropic and tensor components of their NMR chemical shifts. The general agreement between the experimental NMR spectra and the calculations strongly support our previous NMR assignment deduced from experiment. The calculations revealed that in 2 δ(29Si(═O))iso is shifted upfield relative to H2Si═O by as much as 175 ppm; the substituents are responsible for ca. 100 ppm of this shift, while the remaining upfield shift is caused by change in the coordination number from three to four at the Si═O moiety. The change in coordination number leads to a nearly cylindrical symmetry in the plane which is perpendicular to the Si═O molecular axis (δ11 ≈ δ22), in contrast to the significant anisotropy found in this plane in typical doubly bonded compounds. The change in r(Si═O) or in the degree of pyramidality at the Si═O center which accompanies the change in coordination number has practically no effect on the chemical shift. δ(29Si(═S))iso in 3 is shifted downfield significantly relative to that in 2, and a similar trend is found in smaller models with Si═S vs those with Si═O subunits. This downfield shift can be explained by the smaller σ−π* energy difference in the Si═S bond, relative to that of the Si═O bond. The NMR measurements of 2 and 3 having a four-coordinate silicon−chalcogen moiety, and the calculations of their tensor components, their bond polarities, and their Wiberg bond indices revealed that the Si═X moieties in both 2 and 3 have a significant π(Si═X) character; yet, in both molecules there is a substantial contribution from a zwitterionic Si+—X− resonance structure, which is more pronounced in 2.

No comments: