Monday, November 10, 2008

Journal of Magnetic Resonance - Vol 195 Issue 2

Band selective small flip angle COSY: A simple experiment for the analyses of 1H NMR spectra of small chiral molecules
Uday Ramesh Prabhu and N. Suryaprakash
The NMR spectroscopic discrimination of enantiomers in the chiral liquid crystalline solvent is more often carried out using 2H detection in its natural abundance. The employment of 1H detection for such a purpose is severely hampered due to significant loss of resolution in addition to indistinguishable overlap of the spectra from the two enantiomers. This study demonstrates that the band selected small flip angle homonuclear correlation experiment is a simple and robust technique that provides unambiguous discrimination, very high spectral resolution, reduced multiplicity of transitions, relative signs of the couplings and enormous saving of instrument time.

Biomolecular solid state NMR with magic-angle spinning at 25 K
Kent R. Thurber and Robert Tycko
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin–lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed.

Single-scan 2D DOSY NMR spectroscopy
Yoav Shrot, and Lucio Frydman
Spatial encoding is a particular kind of spin manipulation that enables the acquisition of multidimensional NMR spectra within a single scan. This encoding has been shown to possess a general applicability and to enable the completion of arbitrary nD NMR acquisitions within a single transient. The present study explores its potential towards the acquisition of 2D DOSY spectra, where the indirect dimension is meant to encode molecular displacements rather than a coherent spin evolution. We find that in its simplest form this extension shows similarities with methods that have been recently discussed for the single-scan acquisition of this kind of traces; still, a number of advantageous features are also evidenced by the “ultrafast” modality hereby introduced. The principles underlying the operation of this new single-scan 2D DOSY approach are discussed, its use is illustrated with a variety of sequences and of samples, the limitations of this new experiment are noted, and potential extensions of the methodology are mentioned.

No comments: